Q	Working	Answer	Mark	Notes
1	$0.0027 = \frac{5.4}{(V)}$ oe		5	M1 for correctly using density = $\frac{\text{mass}}{\text{volume}}$
	$(V=)\frac{5.4}{0.0027} (=2000)$			M1 for correctly rearranging for V
	$p $ ¥ 10^2 ¥ $h = 2000^0$ ¢			M1ft their 2000 for $_{P \neq 10^2 \neq h}$ their V
	$(h=)\frac{2000}{p \times 10^2}$ oe $(=6.3661)$			M1ft their 2000 dep on previous M1 for correctly rearranging for <i>h</i>
	Correct answer scores full marks (unless from obvious incorrect working)	6.4		A1 awrt 6.4
				Total 5 marks

2	$12 \times 2.45 = 29.4$ or $21 \div 12 = 1.75$		3	M1
	$\frac{'29.4'-21}{21} \times 1000e \text{ or}$ $\frac{2.45-'1.75'}{'1.75'} \times 100 \text{ oe or}$ $(\frac{'29.4'-21}{12}) \div '1.75' \times 1000e \text{ or}$ $(\frac{2.45}{'1.75'} \times 100) - 1000e$			M1 or an answer of 140(%)
	Correct answer scores full marks (unless from obvious incorrect working)	40		A1
				Total 3 marks

Total 4 marks

	Q	Working	Answer	Marl	k Not	tes
3	$\frac{4.5}{100} \times 2$	25 000 (=1125) or		4	M1 finding 4.5% or 104.5% of 25 000 (allow for 3 × 0.045 ×	M2 for $1.045^3 \times 25000 (=2859.(15313))$
	$\frac{104.5}{100} \times$	25000(= 26 125) _{or}			25 000 oe) or the total interest for T bank	, , , , , , , , , , , , , , , , , , , ,
		3 (= 3450) or			or the total amount gained	
		$+1150 \times 3 (= 28450)$ $\frac{3 \times 4.5}{100} \times 25000 (= 3375)$ for this mark)			for T bank	
	$\frac{4.5}{100}$ × ((25 000 + '1125') (= 1175.625 or 1175 or 1176) an	d		M1 completing the interest for C bank	
	$\frac{4.5}{100}$ × ((25 000 + '1125' + '1175.625') (= 1228.529)			or	
	$\frac{\text{or}}{104.5} \times \frac{104.5}{100} \times \frac{104.5}{1$	$\approx 26125 (= 27300.625)$ and $\frac{104.5}{100} \times 27300.625 (= 285)$	29.15)		completing the total amount for C bank	
	'1125'·	+ '1176' + '1229' (= 3530) or ' - 25 000 (=3529)			M1 for total interest for C interest for T bank	bank and total
	or	s 1150 (= 3450)			or total amount for C bank a T bank	and total amount for
		' and 25 000 + '3450' (= 28 450)				
	Working	g required	79 or		A1 dep on M2	

80

Allow 79 - 80

Q	Working	Answer	Mark	Notes
4 (a)		31	1	B1 31/70
		70		Accept 0.44(28571) or 44.(2)%
(b)	$4 \times 6 + 12 \times 14 + 20 \times 19 + 28 \times 25 + 36 \times 6 (= 1488)$		4	M2 for at least 4 correct products added
				(need not be evaluated)
	or			If not M2 then award:
	24 + 168 + 380 + 700 + 216 (= 1488)			II not M2 then award.
	21 - 100 - 300 - 700 - 210 (1100)			(M1 for consistent use of value within
				interval (including end points) for at least
				4 products which must be added
				or
				correct midpoints used for at least 4
				products and not added)
	$\frac{4 \times 6 + 12 \times 14 + 20 \times 19 + 28 \times 25 + 36 \times 6}{9}$ oe			M1 dep on at least M1
	70			Allow division by their Efmorided
	eg '1488' ÷ 70			Allow division by their Σf provided addition or total under column seen
	Correct answer scores full marks (unless from obvious	21.26		A1 awrt 21.26
	incorrect working)			accept 21.3
				Total 5 marks

Q	Working	Answer	Mark	Notes
5	E.g. $2 \times 2 \times 900 \text{ or } 2^2 \times 900 \text{ or } 2 \times 3 \times 600 \text{ or } 2 \times 5 \times 360 \text{ or } 3 \times 3 \times 400 \text{ or } 3^2 \times 400 \text{ or } 3 \times 5 \times 240 \text{ or } 5 \times 5 \times 144 \text{ or } 5^2 \times 144$ E.g. $E.g.$ $E.g.$ $E.g.$ 3600 2×1800 900 2×1800 2×1	Answer	3	M1 for at least 2 correct stages in prime factorisation which give 2 prime factors — may be in a factor tree or a table or listed eg 2, 2, 900 (see LHS for examples of the amount of work needed for the award of this mark, allow no more than one mistake ft in factor tree or table (eg one mistake with 2 prime factors ft: $3600 = 1800 \times 20 = 2 \times 900 \times 4 \times 5$ or $360 = 2 \times 2 \times 90$) M1 for 2, 2, 2, 2, 3, 3, 5, 5 or 2^4 , 3^2 , 5^2 or $2^4 + 3^2 + 5^2$ (ignore 1s) (may be a fully correct factor tree or ladder)
	5 5 (1) 3 75 3 25 Working required	$2^4 \times 3^2 \times 5^2$		A1 dep on M2 can be any order (allow $2^4 cdot 3^2 cdot 5^2$) (SCB1 for $3.6 cdot 2^3 cdot 5^3$)
				Total 3 marks

Q	Working	Answer	Mark	Notes
6	$(5-2) \times 180 - 112 - 102 - 96 (= 230)$ oe eg		5	M1
	540-112-102-96(= 230)			
	or 360 - (180 - 112) - (180 - 102) - (180 - 96) (= 360 - 68 - 78 - 104 = 360 - 230 = 130) oe			
	$\frac{'540'-112-102-96}{2}$ (= 115) or '130' ÷ 2 (= 65)			M1 dep on previous mark
	$\frac{180 \times (8-2)}{8} (=135)$			M1 indep
	or $180 - (360 \div 8) (= 135)$ or $\frac{360}{8} (= 45)$ as exterior angle of octagon			Withhold the mark for $\frac{360}{8}$ (= 45) if shown as an interior angle
	360 - '115' - '135' or '65' + '45'			M1
	Working required	110		A1 dep on M1
				Total 5 marks

Q	Workin	ıg	Answer	Mark		Notes
		•	_			
7	$4 \times (5 - x)$ or $5 \times (2x - 1)$ or $20 - 4x$ or $10x - 5$ oe	or		4	M1	for setting up a correct algebraic expression for area A or area B (could be seen as part of an equation) (condone lack of brackets for multiplying if meaning is clear for this mark only)
	one from: 4(5-x) = 20-4x or $2 \times 4(5-x) = 40-8x$ or $0.5 \times 4(5-x) = 10-2x$ oe	and one from: 5(2x-1) = 10x-5 or $2 \times 5(2x-1) = 20x-10$ or $0.5 \times 5(2x-1) = 5x-2.5$ oe			M1	for expanding 2 sets of brackets correctly (one for each shape) [allow ×2 or ÷2 for the wrong shape for this mark] Need not be in an equation at this stage.
	eg 10x + 8x = 40 + 5 or -5 - 40 = -10x - 8x or 18x = 45 or -45 = -18x or 4x + 5x = 20 + 2.5 oe Working required		2.5		M1	for a <u>correct</u> equation with terms in <i>x</i> on one side and number terms the other side oe dep on M1
						Total 4 marks

Total 3 marks

Q	Working	Answer	Mark	Notes
8	0.22x = 5.48 oe or			M1
8	$0.22x = 5.48$ oe or $(1\% =) 5.48 \div 22 (= 0.24909)$ or			MI
	$(176 -) 3.48 + 22 (-0.24909)$ of $100 \div 22 (= 4.54)$			
	$(x =) 5.48 \div 0.22$ oe or			M1
	$(100\% =) 5.48 \div 22 \times 100 \text{ or}$			
	"0.24909" × 100 or			
	5.48 × "4.54"			
	Correct answer scores full marks (unless from	24.9		A1 awrt 24.9
	obvious incorrect working)	27.7		Al awit 24.7
	correct meaning)			Total 3 marks
8	0.22x = 5480000 oe or			M1
ALT	$(1\% =) 5 480 000 \div 22 (= 249 090.9091)$ or			
1	$100 \div 22 (= 4.54)$			
	5 480 000 ÷ "0.22" oe or			M1
	$(100\% =) 5 480 000 \div 22 \times 100 \text{ or}$			
	"249 090.9091"× 100 or			
	5 480 000 × "4.54"			
	Correct answer scores full marks (unless from	24 900 000		A1 awrt 24 900 000
	obvious incorrect working)			

Q	Working	Answer	Mark	Notes
9 (a)		$\begin{array}{c c} \frac{3}{9} \\ 2 & 4 & 3 \end{array}$	2	B1 for lower 1 st game branch probability B1ft for all values correct on 2 nd game
(b)	$\frac{2}{9} \times \frac{3}{9} \text{ or } \frac{4}{9} \times \frac{4}{9} \text{ or } \frac{3}{9} \times \frac{2}{9}$	9, 9, 9	3	branches M1 ft from their tree diagram for one correct product from WL or L W or DD (allow probabilities to 2 dp truncated or rounded)
	$\frac{2}{9} \times \frac{3}{9} + \frac{4}{9} \times \frac{4}{9} + \frac{3}{9} \times \frac{2}{9}$ Convert grower george full months (unless from	29		M1 ft for a fully correct method
	Correct answer scores full marks (unless from obvious incorrect working)	28 81		A1 Allow 0.345 (2 dp truncated or rounded) or 34.5% (2 sf truncated or rounded) Total 5 marks

Q	Working	Answer	Mark	Notes
10 4 15 (w)	$\frac{4}{5} \times \frac{4}{15}$ or $\frac{5}{15} \times \frac{5}{15}$ or $\frac{6}{15} \times \frac{6}{15}$ oe where $6 = 15 - 4 - 5$)	3	M1 of for o	the correct product (allow decimals to 2 dp ded or truncated) $^{2} = (0.26(6))^{2} = 0.07(11)$ $^{2} = (0.33(3))^{2} = 0.11(1)$ $^{2} = (0.4)^{2} = 0.16$
Co	$\frac{4}{5} \times \frac{4}{15} + \frac{5}{15} \times \frac{5}{15} + \frac{6}{15} \times \frac{6}{15} \text{ oe eg } \frac{16}{225} + \frac{1}{9} + \frac{4}{25}$ where $6 = 15 - 4 - 5$) orrect answer scores full marks (unless from obvious correct working)	77 225	A1 o (if no non-s	ne sum of all three correct products e 0.34(222) or 34.(222)% o marks awarded, SCB2 for $\frac{31}{105}$ oe from replacement, 1 for a fully correct method for non-accement) Total 3 marks

	Q	Working	Answer	Mark	Notes
11		$9^2 + 12^2 - 2 \times 9 \times 12 \times \cos 60 \ (= 117) \text{ or}$ 81 + 144 - 108 (= 117) oe	5	$BM = 9\cos^2 AC^2 = \frac{9}{2}$	$\sin 60 (= 4.5)$ and $AM = 9 \sin 60 (= \frac{9\sqrt{3}}{2})$ and $\frac{\sqrt{3}}{2})^{1/2} + (12 - 4.5)^2$
	(AC =)	$\sqrt{117}$ or $3\sqrt{13}$ or $10.8(16653)$		Al oe	is perpendicular to BC)
		$C = 0.5 \times 9 \times 12 \times \sin 60 \ (= 27\sqrt{3} \text{ or}$		M1 indep o	or $\frac{1}{2} \times '(\frac{9\sqrt{3}}{2})' \times 12 \ (= 27\sqrt{3}) \ \text{oe}$
	(area AC	$(D =)0.5 \times 7 \times \sqrt{117} \times \sin 84 (=37.6(50896))$		M1 dep on	1st M1
	Working	required	84.4	A1 dep on 1	M3 awrt 84.4
					Total 5 marks

12 (a)	$54 \div 9 \times 4 \text{ oe or } \frac{4}{9} \times 54 \text{ oe}$		2	M1 Allow 0.44(44) × 54 or $\frac{24}{54}$
	Correct answer scores full marks (unless from obvious incorrect working	24		A1
(b)	$\frac{"24"+ n}{54+ n} = \frac{1}{2} \text{ or } \frac{30}{60} \text{ or}$ $54 - "24" (= 30) \text{ and } "30" - "24"$ $\text{ or } 2 \times "30" - 54$		2	M1 ft if "24" < 27 or $\frac{6}{60}$
	Correct answer scores full marks (unless from obvious incorrect working)	6		A1
				Total 4 marks

Practice Tests Set 18 – Paper 2H-3H mark scheme, performance data and suggested grade boundaries

3.0

Q	Working	Answer	Mark	Notes
13	$2 \times 0.75 = 1.5$ oe or $2 \times 0.75 \times 2 = 3$ oe		5	M1 for area of rectangle
	$\pi \times (0.5 \div 2)^2 (= 0.1963)$ or			M1 for area of circle
	$\frac{1}{4} \pi \times (0.5 \div 2)^2 (= 0.09817)$			or
	$\begin{bmatrix} -\frac{\pi}{4}\pi & (0.5 & 2) & (0.05617) \\ 2 & & & \end{bmatrix}$			area of semicircle
	"1.5" – "0.09817" (= 1.4018) or			M1
	"3" – "0.1963" (= 2.8036)			
	"1.4018" \times 2 \times 250 \div 4 (= 175.228) or			M1or for 87 – 88
	"2.8036" \times 250 \div 4 (= 175.228) or			
	"1.4018" \times 250 ÷ 4 (= 87.6)			
	Correct answer scores full marks (unless from	175		A1 Allow 175 – 176
	obvious incorrect working)			
				Total 5 marks

	Q	Working	Answer	Mark	Notes
14	5a + 3p = 1.96 and $3a + 6$ or $5a + 3p = 196$ and $3a + 6$ E.g. $15a + 9p = 5.88$ $15a + 10p = 6.1(0)$ Subtracting $(-p = -0.22)$ E.g. $5a + 3p = 1.96$ and Subtracting	E.g. 10a + 6p = 3.92 9a + 6p = 3.66 Subtracting (a = 0.26)	M2 for an arithmetical method (must see the calculation to find 0.22 or 0.26 or 0.74 and 0.48 oe) E.g. $6.1(0) - 5.88 (= 0.22)$ oe or $3.92 - 3.66 (= 0.26)$ oe or $1.96 - 1.22 (= 0.74)$ oe and $1.22 - "0.74" (= 0.48)$		M1 for setting up both equations oe Allow the use of apples and pears oe throughout, e.g. 5 apples + 3 pears = 1.96 and 3 apples + 2 pears = 1.22 M1 for a correct method to eliminate a or p: coefficients of a or p the same and correct operation to eliminate selected variable (condone any one arithmetic error) or to find the cost of 1 apple and 1 pear
		E.g. 5("0.26") + 3p = 196 or 3("0.26") + 2p = 1.22 or $(a+p=) 0.48 \neq 10^{00}$ or	E.g. $3 \times 0.22 (= 0.66)$ 1.96 - "0.66" (= 1.3(0)) " $1.3(0)" \div 5 (= 0.26)$ or $5 \times 0.26 (= 1.3(0))$ 1.96 - "1.3(0)" (= 0.66) " $0.66" \div 3 (= 0.22)$ or Apple and pear is 0.48 oe $[k(a+p)=]k(0.48)$ \(\frac{10}{k}\)	4.8(0)	M1 (dep on M2) for substituting their value found (must be > 0) of one variable into one of the equations or for repeating above method to find second variable or for third working column allow $_{k(a+p)=k(0.48)}$ or for a complete arithmetical method to find the other value M1 (dep on M3) can be implied by $_{10(a+p)}$ provided $_{a}$ and $_{b}$ must be > 0
	Working required			4.8(0)	A1 dep M2 Total 5 marks

Q	Working	Answer	Mark	Notes
15 (a)	0.8, 2.6, 1.9, 1.6, 0.3	Correct histogram	3	B3 fully correct histogram (B2 for at least 3 correct frequency densities or at least 3 correct bars or all five bars of correct width with heights in the correct ratio B1 for 2 correct frequency densities or 2 correct bars – but these bars must be of different widths, ie not 1st and 3rd) or three bars of correct width with heights in the correct ratio)
(b)	Correct answer scores full marks (unless from obvious incorrect working)	4	2	M1 for $\frac{n}{40}$ where $n < 40$ or for $\frac{4}{m}$ where $m > 4$ A1 for $\frac{4}{40}$ oe
	oorious incorrect working)	40		If M0 then SCB1 for $\frac{2}{35}$ (or 0.057) Total 5 marks

Q	Working	Answer	Mark	Notes
16 (a)	$1.75 \times 10^6 \div 2.4 \times 10^7$ or		3	M1
	$1750000 \div 240000000$ oe eg $\frac{1.75}{24}$			
	$0.0729(16)$ or 0.072 or 0.073 or for $\frac{7}{96}$ or $7.29(16)\%$ or 7.2% or 7.3%			A1
	Correct answer scores full marks (unless from obvious incorrect working)	7.3×10^{-2}		A1 accept 7.3×10^{-2} or better $(7.29(16) \times 10^{-2})$
(b)	$2.4 \times 10^7 \times 5.01 \times 10^{21} \div 3$ oe		2	M1
	Correct answer scores full marks (unless from	4×10^{28}		A1 accept 4×10^{28} , 4.0×10^{28} ,
	obvious incorrect working)			4.01×10^{28} , 4.008×10^{28}
				Total 5 marks

Q	Working	Answer	Mark	Notes
17	$LW = 180$ oe $(9LW = 1620)$ or $4L \times (L + W) = 1620$ oe or		5	M2 for any two correct equations from
	$5W \times (L + W) = 1620$ oe or			(i) LW = 180 oe (9LW = 1620) (ii) 4L × (L + W) = 1620 oe
	$4L = 5W \text{ oe } (L = \frac{5}{4}W \text{ oe or } W = \frac{4}{5}L \text{ oe})$			(iii) $5W \times (L + W) = 1620$ oe
				(iv) $4L = 5W$ oe ($L = \frac{5}{4}W$ oe or
				$W = \frac{4}{5}L_{\text{oe}}$
				(M1 for one correct equation or $1620 \div 9$
	4 5			(= 180))
	$L = \frac{4}{5}L'' = 180''$ oe or $W = \frac{5}{4}W'' = 180''$ oe or			M1 for a correct equation in terms of one variable only
	$4L \stackrel{\hat{E}}{=} L + \frac{4}{5}L \stackrel{\hat{z}}{=} 1620$ oe or			
	$5W * \hat{\Sigma} W + W \hat{z} = 1620$			
	9 $L_{\frac{1}{2}}^{\frac{1}{2}} + L_{\frac{1}{2}}^{\frac{1}{2}} = 1620$ oe or $\frac{9\hat{k}}{4} + \frac{5}{4}W_{\frac{1}{2}}^{\frac{1}{2}}W = 1620$ oe or			
	$4\frac{\hat{E}}{W}\frac{180}{W} = \frac{\hat{z}^2}{2} + 4("180") = 1620$ oe or			
	$5("180") + 5 \frac{\hat{E}}{L} \frac{180}{L} " \frac{\hat{z}^2}{2} = 1620 $ oe			
	Correct answer scores full marks (unless from	L = 15		A2 for both correct
	obvious incorrect working)	and		(A1 for one correct)
		W = 12		Award 4 marks for $L = 12$ and $W = 15$
				dep on M3
				Total 5 marks

Q	Working	Answer	Mark	Notes

18	eg $\frac{4}{3}\pi r^3 = 288\pi \text{ oe } \frac{4}{3}p \frac{\hat{F}x_2^3}{2} = 288p \text{ oe}$		6	M1 for using the formula for the volume of a sphere correctly and equating it to $288~\pi$
	x = 12			A1
	$\sqrt{(5 \times '12')^2 + (0.5 \times '12')^2} (= 6\sqrt{101} = 60.299) \text{ oe}$ or $(OC =)0.5\sqrt{'24'^2 + '12'^2} (= 6\sqrt{5}) \text{ and } AC = \sqrt{'(6\sqrt{5})'^2 + '60'^2} (= 6\sqrt{105})$ and $\sqrt{'(6\sqrt{105})'^2 - '12'^2} (= 6\sqrt{101}) \text{ oe}$			M1 (dep on first M1 and using their value for x) for using Pythagoras to find the perp height of faces CAD or BAE or a correct method to find angle CAD or BAE
	$\sqrt{(5\times'12')^2 + (1\times'12')^2})(=12\sqrt{26} = 61.188)) \text{ oe}$ or $(OC =)0.5\sqrt{'24'^2 + '12'^2} (=6\sqrt{5}) \text{ and } AC = \sqrt{'(6\sqrt{5})'^2 + '60'^2} (=6\sqrt{105})$ and $\sqrt{'(6\sqrt{105})'^2 - '6'^2} (=12\sqrt{26}) \text{ oe}$			M1 (dep on first M1 and using their value for x) for using Pythagoras to find the perp height of faces ABC or AED or a correct method to find angle BAC or DAE
	('12' × 2('12')) + 2(0.5 × '12' × '12 $\sqrt{26}$ ') +2(0.5 × 2'12' × '6 $\sqrt{101}$ ') oe eg '288'+2×'72 $\sqrt{26}$ '+2×'72 $\sqrt{101}$ ' or '288' + 2 × '367.129'+2 × '723.59' oe			M1 (dep on first M1 using their value for x and correct working for heights of each triangle) for working out the total surface area of the pyramid
	Correct answer scores full marks (unless from obvious incorrect working)	2469		A1 2469 - 2470
				Total 6 marks

0	Working	Answer	Mark	Notes
V	W OI KIIIg	Allowel	MIMIK	110165

				Edexcel a	averages:	scores of o	andidates	who achi	eved grad	e:		
	Mean	Max	Mean						3 · · · · · · · · · · ·			
Qn	score	score	%	ALL	9	8	7	6	5	4	3	U
1	3.42	5	68	3.42	4.93	4.61	4.07	2.99	1.83	0.63	0.21	0.13
2	2.30	3	77	2.30	2.92	2.70	2.41	2.27	1.79	1.34	0.94	0.53
3	2.95	4	74	2.95	3.88	3.54	3.09	2.73	2.42	1.63	0.67	0.22
4	3.53	5	71	3.53	4.83	4.37	3.85	3.26	2.54	1.41	0.65	0.04
5	2.01	3	67	2.01	2.73	2.51	2.13	1.79	1.56	0.92	0.34	0.11
6	3.20	5	64	3.20	4.88	4.43	3.45	2.61	1.62	0.60	0.14	0.00
7	2.65	4	66	2.65	3.84	3.46	2.73	2.30	1.62	0.87	0.54	0.29
8	1.90	3	63	1.90	2.89	2.33	1.86	1.54	1.17	0.75	0.51	0.04
9	3.01	5	60	3.01	4.61	3.93	2.98	2.32	1.63	1.06	0.65	3.01
10	1.68	3	56	1.68	2.84	2.54	1.86	1.02	0.32	0.15	0.02	0.00
11	2.63	5	53	2.63	4.60	3.74	2.78	1.49	0.66	0.22	0.08	0.02
12	2.62	4	66	2.62	3.53	3.01	2.46	2.36	2.07	1.71	1.08	0.62
13	2.53	5	51	2.53	3.86	3.25	2.77	1.97	1.34	0.73	0.24	0.26
14	2.72	5	54	2.72	4.66	3.83	2.67	1.64	1.06	0.37	0.10	0.02
15	2.50	5	50	2.50	4.42	3.25	2.26	1.72	0.99	0.46	0.15	0.06
16	1.64	5	33	1.64	3.03	2.03	1.49	1.00	0.61	0.34	0.19	0.00
17	1.90	5	38	1.90	3.75	2.01	1.25	1.12	0.91	0.68	0.35	0.28
18	1.45	6	24	1.45	3.20	1.66	1.12	0.57	0.23	0.12	0.02	0.00
	44.64	80	56	44.64	69.40	57.20	45.23	34.70	24.37	13.99	6.88	5.63

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	63	51	43	30	19	11	4